Unit Title: Fourth Grade Unit One (Introduction to Engineering and the Engineering Design Process)

Stage 1: Desired Results

Standards & Indicators:

National Standards in Gifted and Talented Education

- **1.1** Self-Understanding. Students with gifts and talents recognize their interests, strengths, and needs in cognitive, creative, social, emotional, and psychological areas.
- **2.1** Identification. All students in Pre-K through grade 12 with gifts and talents have equal access to the identification process and proportionally represent each campus.
- **2.5** Learning Progress. Students self assess their learning progress.
- **3.2** Talent Development. Students with gifts and talents demonstrate growth in social and emotional and psychosocial skills necessary for achievement in their domain(s) of talent and/or areas of interest.
- **3.3** Responsiveness to Diversity. Students with gifts and talents develop knowledge and skills for living in and contributing to a diverse and global society.
- **3.4** Instructional Strategies. Students with gifts and talents demonstrate their potential or level of achievement in their domain(s) of talent and/or areas of interest.
- 3.5 Instructional Strategies. Students with gifts and talents become independent investigators
- **4.1** Personal Competence. Students with gifts and talents demonstrate growth in personal competence and dispositions for exceptional academic and creative productivity. These include self-awareness, self-advocacy, self-efficacy, confi dence, motivation, resilience, independence, curiosity, and risk taking.
- 4.2 Social Competence. Students with gifts and talents develop social competence manifested in positive peer relationships and social interactions.6.1. Talent Development. Students identify and fully develop their talents and gifts as a result of interacting with educators who possess content pedagogical knowledge and meet national teacher preparation standards in gifted education and the Standards for Professional Learning.

Career Readiness, Life Literacies and Key Skills		
Standard	Performance Expectations	Core Ideas
9.2.5.CAP.1: Evaluate personal likes and dislikes and identify careers that	Students will verbally communicate project designs using reasoning and prior knowledge.	Design communication Implementing original ideas
might be suited to personal likes.	Students will complete assigned tasks using original ideas and designs.	into design plans Accept others ideas and
9.2.5.CAP.4: Explain the reasons why some jobs and careers require specific training, skills, and certification (e.g., life guards, child care, medicine, education) and examples of these requirements.	Students will offer and accept constructive criticism.	suggestions
9.4.5.CI.4 : Research the development process of a product and identify the role of failure as a part of the creative process.		

 Central Idea/Enduring Understanding: The engineering design process emphasizes open-ended problem solving and encourages students to learn from failure. 	 Essential/Guiding Question: How does the engineering design process help solve real world problems? 	
 Content: Technology Scavenger Hunt Quake Safe Freshwater Filter RoboHand 	 Skills (Objectives): Identify objects that are classified as technology Design and build a house to withstand an earthquake Construct a water filter to clean polluted water Build a robotic arm 	

Interdisciplinary Connections:

NJSLS - Science

- 3-5-ETS1-1 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
- 3-5-ETS1-2 Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
- 3-5-ETS1-3 Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

NJSLS - Math

- MP.2 Reason abstractly and quantitatively. (3-5-ETS1-1), (3-5-ETS1-2), (3-5-ETS1-3)
- MP.4 Model with mathematics. (3-5-ETS1-1), (3-5-ETS1-2), (3-5-ETS1-3)
- MP.5 Use appropriate tools strategically. (3-5-ETS1-1), (3-5-ETS1-2), (3-5-ETS1-3)

NJSLS - ELA

- W.AW.4.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information.
- W.WR.4.5 Conduct short research projects that use multiple reference sources (print and non-print) and build knowledge through investigation of different aspects of a topic.
- W.SE.4.6 Gather relevant information from multiple print and digital sources; take notes, prioritize and categorize information; provide a list of sources.

Stage 2:	Assessment	Evidence
----------	------------	----------

Performance Task(s):

- Correctly identify objects classified as technology and explain why
- Construct a model building that can withstand a shake table for 20 shakes
- Design and build a water filtration system that will remove particles from dirty water
- Design and assemble a robotic arm that can grasp a ball

Other Evidence:

- Group discussion of technology
- Students reflect on their original plan and how it differed from their final plan.
- Students show the ability to improve on their design further.

Stage 3: Learning Plan

Learning Opportunities/Strategies:

• Students find items around the room that fit the definition of technology and explain what problem it solves and how it has been improved over time.

And Resources:

<u>Lesson 1</u>

• Student pages of "What am I?"

 Students will work in groups to research and present one of the following STEM careers: Architect, Structural Engineer, Seismologist, or Civil Engineer 	 Lesson 2 Graphic organizer Engineering Design Process Journal STEM career task card Lakeshore Real STEM Challenge Kit
 Eesson 3 Students must design and make a building frame that is at least 12" high, fits on the shake table and stands straight after 20 shakes. 	 Lesson 3 Lakeshore Real STEM Challenge Kit Engineering Design Process Journal Materials to make a building
 <u>Lesson 4</u> Students will construct and test their building frame and redesign as needed. 	 Lakeshore Real STEM Challenge Kit Engineering Design Process Journal Materials to make a building
 Lesson 5 Students will design the appearance of their building to fit into a modern or traditional city without changing the structure and submit a proposal to an architectural company. 	 Lesson 5 Lakeshore Real STEM Challenge Kit Engineering Design Process Journal Materials to make a building
 Students will work in groups to research and conduct interviews of students acting as one of the following STEM careers: Water Resource Supervisor, Groundwater Geologist, Environmental Health and Safety Specialist, or Sanitation and Waste Engineer. 	 Lesson 6 Graphic organizer Engineering Design Process Journal STEM career task card Lakeshore Real STEM Challenge Kit
 Lesson 7 Students will design and build a water filtration system that will remove particles from dirty water. 	 Lesson 7 Engineering Design Process Journal STEM career task card Lakeshore Real STEM Challenge Kit Materials to construct water filter
 Lesson 8 Students will construct and test their water filtration system and redesign as needed. 	 Lesson 8 Engineering Design Process Journal Lakeshore Real STEM Challenge Kit Materials to construct water filtration system
 Lesson 9 Students will work in groups to research and place a help wanted for one of the following STEM careers: Programmer, Electrician, Roboticist or Mechanical Engineer 	 Lesson 9 Engineering Design Process Journal Lakeshore Real STEM Challenge Kit
 Students will design and construct a robotic arm that can grasp three types of balls from a distance of 12 inches. 	 Lesson 10 Engineering Design Process Journal Lakeshore Real STEM Challenge Kit Materials to build with

Ecsson 11 Students will construct and test their robotic arm and redesign as necessary. arm	 Lesson 11 Engineering Design Process Journal Lakeshore Real STEM Challenge Kit Materials to build with
 Lesson 12 Students will make a digital or print ad for their robotic arm to present to a hospital. 	 Lesson 12 Engineering Design Process Journal

Differentiation *Please note: Teachers who have students with 504 plans that require curricular accommodations are to refer to struggling and/or Special Needs Section for differentiation.

High-Achieving Students	On Grade Level Students	Struggling Students	Special Needs/ELL
Students will be provided with more challenging work based on their individual needs.	Students will be provided with more challenging work based on their individual needs.	Student and teacher will make plan to improve in certain areas as needed	Students will be allotted extra time as needed to finish projects Students will have the opportunity to work solo if needed.

<u>Unit Title</u>: Fourth Grade Unit 2 (Rube Goldberg and Chain Reaction Machines)

Stage 1: Desired Results

Standards & Indicators:

National Standards in Gifted and Talented Education

- **1.1** Self-Understanding. Students with gifts and talents recognize their interests, strengths, and needs in cognitive, creative, social, emotional, and psychological areas.
- **2.1** Identification. All students in Pre-K through grade 12 with gifts and talents have equal access to the identification process and proportionally represent each campus.
- **2.5** Learning Progress. Students self assess their learning progress.
- **3.2** Talent Development. Students with gifts and talents demonstrate growth in social and emotional and psychosocial skills necessary for achievement in their domain(s) of talent and/or areas of interest.
- **3.3** Responsiveness to Diversity. Students with gifts and talents develop knowledge and skills for living in and contributing to a diverse and global society.
- **3.4** Instructional Strategies. Students with gifts and talents demonstrate their potential or level of achievement in their domain(s) of talent and/or areas of interest.
- 3.5 Instructional Strategies. Students with gifts and talents become independent investigators
- **4.1** Personal Competence. Students with gifts and talents demonstrate growth in personal competence and dispositions for exceptional academic and creative productivity. These include self-awareness, self-advocacy, self-efficacy, confi dence, motivation, resilience, independence, curiosity, and risk taking.
- **4.2** Social Competence. Students with gifts and talents develop social competence manifested in positive peer relationships and social interactions.6.1. Talent Development. Students identify and fully develop their talents and gifts as a result of interacting with educators who possess content pedagogical knowledge and meet national teacher preparation standards in gifted education and the Standards for Professional Learning.

Standard	Performance Expectations	Core Ideas
9.2.5.CAP.1: Evaluate personal likes and dislikes and identify careers that	Students will explore a variety of technologies that solve problems in our everyday lives.	Defining and delimiting engineering practices

Career Readiness, Life Literacies and Key Skills

might be suited to personal	Students will brainstorm ways to improve an		Developing possible	
likes.	invention that they use everyday.		solutions	
9.2.5.CAP.4: Explain the reasons why some jobs and careers require specific training, skills, and certification (e.g., life guards, child care, medicine, education) and examples of these requirements.	Students will offer and accept constructive criticism.		Influence of engineering, technology, and science on society and the natural world.	
Central Idea/Enduring Unders	standing:	Essential/Guiding Quest	on:	
-			How do chain reaction machines help make life	
creation and production of many items in our		easier?		
everyday lives that inclu				
Content:		Skills (Objectives):		
Types Simple Machines	3		n the six different types of	
 Mouse Trap 	,	 Identify and explain the six different types of simple machines 		
Rube Goldberg		 Explain how one reaction causes another 		
Chain Reaction Machines		 Explain now one reaction causes another Explore how Rube Goldberg influenced Science 		
Comic Strips		 Understand how Rube Goldberg used chain 		
		reaction machines	•	
			rips to plan out Rube Goldberg	
		machines	ips to plan out tube Coluberg	

Interdisciplinary Connections:

NJSLS - Science

- 3-5-ETS1-1 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.
- 3-5-ETS1-2 Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. •
- 3-5-ETS1-3 Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

NJSLS - Math

- MP.2 Reason abstractly and quantitatively. (3-5-ETS1-1), (3-5-ETS1-2), (3-5-ETS1-3)
- MP.4 Model with mathematics. (3-5-ETS1-1), (3-5-ETS1-2), (3-5-ETS1-3)
- MP.5 Use appropriate tools strategically. (3-5-ETS1-1), (3-5-ETS1-2), (3-5-ETS1-3)

NJSLS - ELA

- W.AW.4.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information.
- W.WR.4.5 Conduct short research projects that use multiple reference sources (print and non-print) and build knowledge through investigation of different aspects of a topic.
- W.SE.4.6 Gather relevant information from multiple print and digital sources; take notes, prioritize and categorize information; provide a list of sources.

C	
Performance Task(s):	Other Evidence:
 Students will use their knowledge of simple machines to plan a Rube Goldberg machine of their own consisting of 5 different chain reactions. Students will construct a Rube Goldberg machine 	 Group discussion of improved backpacks. Students reflect on their original plan and how it differed from their final plan. Students show the ability to improve on their design further.

Stage 2: Assessment Evidence

Students will design a comic strip of a Rube				
Goldberg machine to make an everyday task easier.				
Stage 3: Learning Plan				
Learning Opportunities/Strategies:	Resources:			
Lesson 1	Lesson 1			
 Navigate a Hyper Doc and explore the 6 types of 	Hyper Doc link			
simple machines. Watch a music video	Ok GO! Music Video			
highlighting a large chain reaction machine.				
Lesson 2	Lesson 2			
 Practice assembling and using a chain reaction machine with the game Mouse Trap. Identify 	Mouse Trap Game			
different types of simple machines in the game.				
Lesson 3	Lesson 3			
Research who Rube Goldberg was and discuss	Article on Rube Goldberg			
the important inventions he created with other students.				
siduents.				
Lesson 4	Lesson 4			
Read "Rube Goldberg's Simple Humdrum School	 Book, "Rube Goldberg's Simple Humdrum 			
Day" and discuss how Rube designed machines	School Day"			
to make everyday tasks easier and harder.	Paper			
Lesson 5	Lesson 5			
Students work in groups to plan and create a	 Book, "Rube Goldberg's Simple Humdrum 			
comic strip of a Rube Goldberg Machine.	School Day"			
	Paper			
Lesson 6	Lesson 6			
Outline objectives for students to begin planning	Engineering Design Poster			
an actual Rube Goldberg machine that will use	Engineering Design Process Journal			
simple and compound machines to turn a light	 Book, "Rube Goldberg's Simple Humdrum 			
switch off.	School Day"			
Lesson 7	Lesson 7			
Students will begin to build the first chain reaction	Engineering Design Poster			
step of their Rube Goldberg machine.	Engineering Design Process Journal			
	 Materials for Rube Goldberg Machine 			
Losson 8	Lesson 8			
 <u>Lesson 8</u> Students will begin to build the 2nd chain reaction 	Engineering Design Poster			
step of their Rube Goldberg machine and test it	 Engineering Design Process Journal 			
with step 1 to check for success.	Materials for Rube Goldberg Machine			
 <u>Lesson 9</u> Students will begin to build the 3rd and chain 	 Engineering Design Poster 			
reaction step of their Rube Goldberg machine	 Engineering Design Process Journal 			
and test it with step 1 and 2 to check for success.	Materials for Rube Goldberg Machine			
Lesson 10	Lesson 10 Engineering Design Poster			
	Engineering Design Poster			

 Students will design and build the 4th and final steps of their Rube Goldberg machine to turn off a light and test for success. 		 Engineering Design Process Journal Materials for Rube Goldberg Machine 	
 Lesson 11 Students will review types of kinetic and potential energy and demonstrate both types using their finished Rube Goldberg machine. 		 Lesson 11 Engineering Design Poster Engineering Design Process Journal 	
 Each group will present their finished Rube Goldberg machines to 3rd grade GATE students to be judged in a contest. 		 Easterna Lesson 12 Finished Rube Goldberg Machines 	
Differentiation *Please note: Teachers who have students with 504 plans that require curricul to refer to the Struggling and/or Special Needs Section for differentiation.			curricular accommodations are
High-Achieving Students	On Grade Level Students	Struggling Students	Special Needs/ELL
Students will be provided with more challenging work based on their individual needs.	Students will be provided with more challenging work based on their individual needs.	Student and teacher will make plan to improve in certain areas as needed	Students will be allotted extra time as needed to finish projects Students will have the opportunity to work solo if needed.

Pacing Guide

Course Name	Resource	Standards
UNIT 1 Introduction to Engineering and the Engineering Design Process 12 days 2 days per the 6 day cycle 12 weeks	 A. Lakeshore Real STEM Challenge Kit, Quakeshake B. Lakeshore Real STEM Challenge Kit, Freshwater Filter C. Lakeshore Real STEM Challenge Kit, Robohand 	National Standards in Gifted and Talented Education 1.1, 2.1, 2.5, 3.2, 3.3, 3.4, 3.5, 4.1, 4.2, 6.1 NJSLS - Science 3-5-ETS1-1, 2, 3 NJSLS - Math (3-5-ETS1-1), (3-5-ETS1-2), (3-5-ETS1-3). (3-5-ETS1-2), (3-5-ETS1-2), (3-5-ETS1-1), (3-5-ETS1-2), (3-5-ETS1-3) (3-5-ETS1-1), (3-5-ETS1-2), (3-5-ETS1-3)(3-5-ETS1-2), (3-5-ETS1-3)(3-5-ETS1-1), (3-5-ETS1-2) NJSLS- Language Arts
		W.5.7, W.5.8
UNIT 2 Rube Goldberg & Chain Reaction Machines 12 days 2 days per the 6 day cycle 12 weeks	A. Book, "Rube Goldberg's Simple Humdrum School Day"	National Standards in Gifted and Talented Education 1.1, 2.1, 2.5, 3.2, 3.3, 3.4, 3.5, 4.1, 4.2, 6.1 NJSLS - Science 3-5-ETS1-1, 2, 3 NJSLS - Math (3-5-ETS1-1), (3-5-ETS1-2), (3-5-ETS1-3). (3-5-ETS1-1), (3-5-ETS1-3). (3-5-ETS1-3) (3-5-ETS1-2), (3-5-ETS1-2), (3-5-ETS1-2), (3-5-ETS1-2), (3-5-ETS1-2), (3-5-ETS1-2), (3-5-ETS1-2), (3-5-ETS1-3)(3-5-ETS1-1), (3-5-ETS1-2), (3-5-ETS1-2
		<u>NJSLS- Language Arts</u> W.5.7, W.5.8